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Outline

Relation between the entropy density and the response of the system to the shift
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Momentum distribution from shifted boundary conditions

The relative contribution to the partition function of
states with momentum p is [T = 1/L0]

R(p)

V
=

Tr{e−L0Ĥ P̂(p)}

Tr{e−L0Ĥ}

where

Z

0X

P̂(p) =
1

V

Z
d3

z e−ip·z eip̂·z , eip̂z|φ〉 = |φz〉

The momentum distribution can then be written as

R(p)

V
=

1

V

Z
d3

z e−ip·z Z(z)

Z
, φ(L0,x) = φ(0,x + z)

where Z(z) is the usual path integral but with shifted boundary conditions in time direction
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Cumulant generator

As usual the generator of its cumulants is defined as
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eip·z R(p) =⇒ e−K(z) =
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The momentum cumulants can then be written as
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In the continuum they equal the standard definition

〈p̂2n
1 p̂2n

2 p̂2n
3 〉c = (−1)n

1
+n

2
+n

3 〈T 01 · · ·T 03〉c , T 0k(x0) =

Z
d3x T0k(x)

and, being conn. corr. functions of the momentum charge, they are finite as they stand.
The generator K(z) and the distribution R(p) are thus expected to be finite as well
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Momentum distribution from shifted boundaries on the lattice [Della Morte, LG 10; LG, Meyer 10]

On the lattice a theory is invariant under a discrete
group of translations only. It is still possible, how-
ever, to factorize the Hilbert space in sectors with
definite conserved total momentum

The momentum distribution is given by

R(p)

V
=

a3

V

X

z

e−ip·z Z(z)

Z

a
L

where Z(z) is the usual PI but with (discrete) shifted boundary conditions.

Since only physical states contribuite to it, R(p) is expected to converge to the continuum
universal value without need for UV renormalization

The shifted boundary conditions allow us to define connected correlation functions of the
momentum which do not require any UV renormalization

Their continuum limit satisfies the standard EMT WIs, which can be used to interpret the
cumulants in terms of basic thermodynamic potentials
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Ward identities for two-point correlators ofT 0k (I)

In the continuum a judicious combination of WIs associated with translational invariance

∂µ〈Tµν(x) O1 . . . On〉 = −
nX

i=1

〈O1 . . . δxOi . . . On〉 ,

leads to (x0 6= y0 , wk 6= zk)

L0 〈T 0k(x0) T0k(y)〉 − Lk 〈 eT0k(wk) T0k(z)〉 = 〈T00〉 − 〈Tkk〉

where

T 0k(x0) =

Z
d3x T0k(x) , eT0k(xk) =

Z h Y

ν 6=k

dxν

i
T0k(x)

Note that:

∗ All operators at non-zero distance

∗ Number of EMT on the two sides different

∗ Trace component of EMT does not contribute

∗ On the lattice it can be imposed to fix the renormalization of T0k
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Ward identities for two-point correlators ofT 0k (II)

The commutator of boost with momentum

[K̂k, p̂k] = iĤ

is expressed in the Euclidean by the WIs

0

∂ R ∂ R

Oi

Tok

X

Z

∂R
dσµ(x) 〈Kµ;0k(x) T 0k(y0) O1 . . . On〉c = 〈T 00(y0) O1 . . . On〉c

when the Oi are localized external fields.

In a 4D box boost transformations are incompatible with (periodic) boundary conditions.
WIs associated with SO(4) rotations must be modified by finite-size contributions

The finite-volume theory is translational invariant, and it has a conserved Tµν . Modified
WIs associated to boosts constructed from those associated to translational invariance

L0 〈T 0k(x0) T0k(y)〉 − Lk 〈 eT0k(wk) T0k(z)〉 = 〈T00〉 − 〈Tkk〉
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Ward identities for two-point correlators ofT 0k (III)

In the thermodynamic limit the WI reads (y0 6= x0)

L0 〈T 0k(x0) T0k(y)〉 = 〈T00〉 − 〈Tkk〉

By remembering that in the Euclidean

p̂k ↔ −i T 0k , e = −〈T00〉 , p = 〈Tkk〉 =⇒
〈p̂2

k〉

V
= T {e + p} = T 2s

In a finite box and for M 6= 0 (M lightest screening mass)

〈T 0k(x0) T0k(y)〉 = −T {e + p} +
νMT 2

2πL

»
M + 3T

∂M

∂T

–
e−ML + . . .

i.e. leading finite-size effects are known functions of M , and are exponentially small in ML
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Entropy density from shifted boundary conditions

By putting together the two formulas
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T 2
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On the lattice the only difference is the discrete derivative

s = −
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»
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Z

–

with nz being kept fixed when a → 0

Note that:

∗ No ultraviolet renormalization

∗ Finite volume effects exponentially small

∗ Discretization effects O(a2) once action improved
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Recursive relation for higher order cumulants

There is more information in K(z). Again a judicious combination of WIs leads to

〈T 0k(x1
0) T 0k(x2

0) . . . T 0k(x2n
0 )〉c = 〈T 00(x1

0) Tkk(x2
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n
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∂
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+ 2n

o
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By combining these relations, and by taking the infinite volume limit

〈T 0k(x1
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∂
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n 1
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〈T 0k(x1
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o

Expression of finite-size corrections similar to the one of two-point corr. functions
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Specific heat

Written for cumulants the recursive relation reads

〈p̂2n
z 〉c = (2n − 1) T 2 ∂

∂T

n
T 〈p̂2n−2

z 〉c
o

and analogously for mixed ones

The definition of the specific heat implies
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and therefore
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On the lattice the only difference are the discrete derivatives. Finite-size corrections are
again known, and are exponentially suppressed

L. Giusti – BNL May 2012 – p. 11/16



Scale-invariant case

If T is the only dimensionful parameter in the problem, the recursive relation implies

〈p̂2n
z 〉c

V
= c2n T 2n+3 =⇒ c2n =

(n + 1)

4
(2n!) c2

By using the moment-cumulant transformation, the generator of the cumulants reads

K({0, 0, z}) =
∞X

n=1

(−1)n+1 〈p̂2n
z 〉c

2n!
z2n

The series can be re-summed to obtain

K({0, 0, z})

V
=

s

4

n
1 −

1

(1 + z2T 2)2

o

i.e. the entropy determines all the cumulants. The combination of scale and relativistic
invariance fixes the functional form to be the one of the free case.
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Numerical algorithm for the cumulant generator (I)

The most straightforward way for computing
the cumulant generator is to rewrite it as

Z(z)

Z
=

n−1Y

i=0

Z(z, ri)

Z(z, ri+1)

where a set of (n + 1) systems is designed so
that the relevant phase spaces of successive path
integrals overlap and that Z(z, r0) = Z(z) and
Z(z, rn) = Z

Z

0X

The path integrals of the interpolating systems are defined as

Z(z, r) =

Z
DU DU4,L0/a−1 e−SG[U,U4,r]

where U4,L0/a−1 is an extra (5th) temporal link assigned to each point of last time-slice

L. Giusti – BNL May 2012 – p. 13/16



Numerical algorithm for the cumulant generator (II)

The action of the interpolating systems is

SG[U, U4, r] = SG[U ] +
β

3
(1 − r)

X

x,k

ReTr
n

U0k(L0/a − 1,x) − U4k(L0/a − 1,x)
o

with the extra space-time plaquette given by

U4k(L0/a− 1,x) = U4(L0/a− 1,x) Uk(0,x + z) U†
4 (L0/a− 1,x + k̂) U†

k(L0/a− 1,x)

If we define the "reweighting” observable as

O[U, ri+1] = eSG[U,U4,ri+1]−SG[U,U4,ri]

then
Z(z, ri)

Z(z, ri+1)
= 〈O[U, ri+1] 〉ri+1

L. Giusti – BNL May 2012 – p. 14/16



Numerical algorithm for the cumulant generator (II)

The action of the interpolating systems is

SG[U, U4, r] = SG[U ] +
β

3
(1 − r)

X

x,k

ReTr
n

U0k(L0/a − 1,x) − U4k(L0/a − 1,x)
o

with the extra space-time plaquette given by

U4k(L0/a− 1,x) = U4(L0/a− 1,x) Uk(0,x + z) U†
4 (L0/a− 1,x + k̂) U†

k(L0/a− 1,x)

On each lattice the entropy is finally given by

s = −
2

z2T 2V

n−1X

i=0

ln

»
Z(z, ri)

Z(z, ri+1)

–

L. Giusti – BNL May 2012 – p. 14/16



Numerical results for the entropy
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Lat 6/g2
0 L0/a L/a K(z, a)

2K(z,a)

|z|2T5V

A1 5.9 4 12 17.20(11) 5.10(3)

A1a 5.9 4 16 40.71(15) 5.089(19)

A2 6.024 5 16 13.05(10) 4.98(4)

A3 6.137 6 18 7.32(8) 4.88(6)

A4 6.337 8 24 4.32(16) 5.12(19)

A5 6.507 10 30 2.62(17) 4.9(3)
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Numerical results for the entropy
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A linear extrapolation in a2 gives

s

T 3
= 4.77 ± 0.08± ?? T = 1.5 Tc

s

T 3
= 6.30 ± 0.09± ?? T = 4.1 Tc

Compatible with previous computations, but
continuum extrapolation must be improved
[Boyd et al. 96; Namekawa et al. 01]

Lat 6/g2
0 L0/a L/a K(z, a)

2K(z,a)

|z|2T5V

A1 5.9 4 12 17.20(11) 5.10(3)

A1a 5.9 4 16 40.71(15) 5.089(19)

A2 6.024 5 16 13.05(10) 4.98(4)

A3 6.137 6 18 7.32(8) 4.88(6)

A4 6.337 8 24 4.32(16) 5.12(19)

A5 6.507 10 30 2.62(17) 4.9(3)

Lat 6/g2
0 L0/a L/a K(z, a)

2K(z,a)

|z|2T5V

B1 6.572 4 12 22.22(11) 6.58(3)

B1a 6.572 4 16 53.47(16) 6.684(20)

B2 6.747 5 16 17.11(15) 6.53(6)

B3 6.883 6 18 9.61(9) 6.40(6)

B4 7.135 8 24 5.42(17) 6.42(20)

B5 7.325 10 30 3.32(18) 6.1(3)
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Numerical results for the entropy
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T 3
= 6.30 ± 0.09± ?? T = 4.1 Tc

Compatible with previous computations, but
continuum extrapolation must be improved
[Boyd et al. 96; Namekawa et al. 01]

Lat 6/g2
0 L0/a L/a K(z, a)

2K(z,a)

|z|2T5V

A1 5.9 4 12 17.20(11) 5.10(3)

A1a 5.9 4 16 40.71(15) 5.089(19)

A2 6.024 5 16 13.05(10) 4.98(4)

A3 6.137 6 18 7.32(8) 4.88(6)

A4 6.337 8 24 4.32(16) 5.12(19)

A5 6.507 10 30 2.62(17) 4.9(3)

Lat 6/g2
0 L0/a L/a K(z, a)

2K(z,a)

|z|2T5V 3

C1 7.234 4 16 57.44(25) 7.18(3)

C2 7.426 5 20 36.5(4) 7.13(8)

C3 7.584 6 24 24.7(4) 6.94(12)
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Conclusions and outlook

Correlation functions of total momentum fields can be related to derivatives of path
integrals with shifted boundary conditions

One of the applications is the computation of thermodynamic potentials, which can be
connected to the cumulants via Ward identities of EMT. The entropy, for instance, is

s = −
1

T 2
lim

V →∞

1

V

d2

dz2
ln Z({0, 0, z})

˛̨
˛
z=0

If lightest screening mass M 6= 0, leading finite-size corrections exponentially small in ML

On the lattice these formulas apply once the derivative is discretized and the continuum
limit is taken. No additive (vac. subtraction) or multiplicative UV renormalization is needed

Same WIs allow for a non-perturbative renormalization of T0k

Feasibility study very promising even with a very simple-minded (expensive) algorithm
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